Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ji-Wei Liu, Shan Gao,* Li-Hua Huo, Yu Dong and Hui Zhao

College of Chemistry and Chemical Technology, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.039$
$w R$ factor $=0.097$
Data-to-parameter ratio $=14.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Hexaaquamagnesium(II) benzene-1,3dioxyacetate trihydrate

The title complex, $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right](1,3-\mathrm{BDOA}) \cdot 3 \mathrm{H}_{2} \mathrm{O} \quad(1,3-$ $\mathrm{BDOA}^{2-}=$ benzene-1,3-dioxyacetate, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}{ }^{2-}$), consists of an $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cation, a benzene-1,3-dioxyacetate dianion and three uncoordinated water molecules. The $\mathrm{Mg}^{\mathrm{II}}$ atom is coordinated by six water molecules, forming a slightly distorted octahedral coordination. A two-dimensional supramolecular network structure is constructed by hydrogen bonds.

Comment

Phenylenedioxydiacetic acids, which have been known to show biological activities, are multidentate flexible ligands with versatile bonding modes. In contrast to metal complexes of benzene-1,2-dioxyacetic acid or benzene-1,4-dioxyacetic acid (Gao et al., 2004; Liu et al., 2004; McCann et al., 1995, 1996; Kennard et al., 1986), reports of structures of complexes with benzene-1,3-dioxyacetic acid are rare. Recently, we reported the crystal structure of a one-dimensional chain $\mathrm{Zn}^{\mathrm{II}}$ polymer, $\left\{\left[\mathrm{Zn}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right\}_{n}$ (Gao et al., 2004), in which the zinc(II) ion displays a four-coordinate distorted tetrahedral geometry and benzene-1,3-dioxyacetate acts as the bridging ligand. In the present study, the title complex, $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right](1,3-\mathrm{BDOA}) \cdot 3 \mathrm{H}_{2} \mathrm{O}\left(1,3-\mathrm{BDOA}^{2-}=\right.$ benzene-1,3dioxyacetate), (I), was obtained by the reaction of magnesium perchlorate hexahydrate, imidazole and sodium benzene-1,3dioxyacetate in an aqueous solution. We report here the synthesis and structure of (I).

(I)

As shown in Fig. 1, the asymmetric unit of (I) consists of an $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cation, a benzene-1,3-dioxyacetate dianion and three water molecules, which are linked by intermolecular hydrogen bonds. The $\mathrm{Mg}^{\mathrm{II}}$ atom is coordinated by six water molecules, forming a distorted octahedral coordination $[\mathrm{Mg}-\mathrm{O}=2.048(1)-2.117$ (1) $\AA]$. The oxyacetate groups and the benzene ring are essentially coplanar, with $\mathrm{C} 7-\mathrm{O} 10-$ $\mathrm{C} 9-\mathrm{C} 10$ and $\mathrm{C} 3-\mathrm{O} 9-\mathrm{C} 2-\mathrm{C} 1$ torsion angles of -177.3 (1) and $165.0(1)^{\circ}$, respectively. The cations and anions are linked by four $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds through the carboxylate O

Received 5 May 2004 Accepted 19 May 2004 Online 22 May 2004

Figure 1
ORTEPII (Johnson, 1976) plot of the title compound, with 30% probability ellipsoids. Dashed lines represent hydrogen bonds.

The hydrogen-bonded chain structure of the title complex.
atoms with coordinated water molecules, resulting in a onedimensional chain along the c direction. A two-dimensional supermolecular network is constructed by hydrogen bonds in the $a c$ plane (Fig. 2 and Table 2).

Experimental

Benzene-1,3-dioxyacetic acid was prepared following the method described for the synthesis of benzene-1,2-dioxyacetic acid by Mirci (1990). The title complex was prepared by the addition of magnesium perchlorate hexahydrate (20 mmol) and imidazole (20 mmol) to an aqueous solution of benzene-1,3-dioxyacetic acid (20 mmol), and the pH was adjusted to 7 with 0.1 M sodium hydroxide. Colorless crystals were separated from the filtered solution after several days. Analysis calculated for $\mathrm{C}_{10} \mathrm{H}_{26} \mathrm{MgO}_{15}$: C $29.25, \mathrm{H} 6.38 \%$; found: $\mathrm{C} 29.01, \mathrm{H}$ 6.49\%.

Crystal data

$\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}\right) \cdot 3 \mathrm{H}_{2} \mathrm{O}$	$D_{x}=1.456 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=410.62$	Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / n$	Cell parameters from 12616
$a=6.134(1) \AA$	reflections
$b=26.020(5) \AA$	$\theta=3.5-27.4^{\circ}$
$c=12.028(2) \AA$	$\mu=0.17 \mathrm{~mm}^{\circ}$
$\beta=102.64(3)^{\circ}$	$T=293(2) \mathrm{K}$
$V=1873.3(6) \AA^{3}$	Prism, colorless
$Z=4$	$0.39 \times 0.26 \times 0.18 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID diffractometer

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.937, T_{\text {max }}=0.971$
17782 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.097$
$S=1.09$
4240 reflections
289 parameters
H atoms treated by a mixture of independent and constrained refinement

4240 independent reflections
3547 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=27.4^{\circ}$
$h=-7 \rightarrow 7$
$k=-33 \rightarrow 33$
$l=-15 \rightarrow 15$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0482 P)^{2} \\
&+0.4786 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.39 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Mg} 1-\mathrm{O} 1$	$2.051(1)$	$\mathrm{Mg} 1-\mathrm{O} 4$	$2.048(1)$
$\mathrm{Mg} 1-\mathrm{O} 2$	$2.059(1)$	$\mathrm{Mg} 1-\mathrm{O} 5$	$2.055(1)$
$\mathrm{Mg} 1-\mathrm{O} 3$	$2.114(1)$	$\mathrm{Mg} 1-\mathrm{O} 6$	$2.117(1)$
$\mathrm{O} 1-\mathrm{Mg} 1-\mathrm{O} 2$	$178.36(5)$	$\mathrm{O} 4-\mathrm{Mg} 1-\mathrm{O} 2$	$88.69(4)$
$\mathrm{O} 1-\mathrm{Mg} 1-\mathrm{O} 3$	$88.20(5)$	$\mathrm{O} 4-\mathrm{Mg} 1-\mathrm{O} 3$	$88.81(5)$
$\mathrm{O} 1-\mathrm{Mg} 1-\mathrm{O} 5$	$85.25(5)$	$\mathrm{O} 4-\mathrm{Mg} 1-\mathrm{O} 5$	$178.18(5)$
$\mathrm{O} 1-\mathrm{Mg} 1-\mathrm{O} 6$	$91.18(5)$	$\mathrm{O} 4-\mathrm{Mg} 1-\mathrm{O} 6$	$89.74(5)$
$\mathrm{O} 2-\mathrm{Mg} 1-\mathrm{O} 3$	$91.61(5)$	$\mathrm{O} 5-\mathrm{Mg} 1-\mathrm{O} 2$	$93.12(5)$
$\mathrm{O} 2-\mathrm{Mg} 1-\mathrm{O} 6$	$89.05(5)$	$\mathrm{O} 5-\mathrm{Mg} 1-\mathrm{O} 3$	$90.91(5)$
$\mathrm{O} 3-\mathrm{Mg} 1-\mathrm{O} 6$	$178.39(5)$	$\mathrm{O} 5-\mathrm{Mg} 1-\mathrm{O} 6$	$90.52(5)$
$\mathrm{O} 4-\mathrm{Mg} 1-\mathrm{O} 1$	$92.94(5)$		

Table 2
Hydrogen-bonding geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H11 \cdots O ${ }^{\text {a }}{ }^{\text {i }}$	0.853 (9)	1.876 (9)	2.728 (2)	177 (2)
$\mathrm{O} 1-\mathrm{H} 12 \cdots \mathrm{O} 15^{\text {ii }}$	0.844 (9)	1.962 (9)	2.803 (2)	174 (2)
$\mathrm{O} 2-\mathrm{H} 13 \cdots \mathrm{O} 11^{\text {iii }}$	0.855 (9)	1.839 (9)	2.694 (2)	179 (2)
$\mathrm{O} 2-\mathrm{H} 14 \cdots \mathrm{O} 7$	0.849 (9)	2.067 (9)	2.913 (2)	175 (2)
$\mathrm{O} 3-\mathrm{H} 15 \cdots \mathrm{O} 6^{\text {ii }}$	0.851 (9)	2.04 (1)	2.854 (2)	161 (2)
$\mathrm{O} 3-\mathrm{H} 16 \cdots \mathrm{O} 13^{\text {ii }}$	0.859 (9)	1.813 (9)	2.648 (2)	163 (2)
O4-H17 . . 88	0.853 (9)	1.797 (9)	2.649 (2)	176 (2)
$\mathrm{O} 4-\mathrm{H} 18 \cdots \mathrm{O} 3^{\text {iv }}$	0.845 (9)	2.08 (1)	2.926 (2)	176 (2)
O5-H19 . . O12 ${ }^{\text {iii }}$	0.851 (9)	1.81 (1)	2.657 (2)	174 (2)
$\mathrm{O} 5-\mathrm{H} 20 \cdots \mathrm{O} 14^{\text {v }}$	0.843 (9)	2.057 (9)	2.897 (2)	173 (2)
O6-H21 \cdots O14	0.848 (9)	1.941 (9)	2.787 (2)	175 (2)
O6-H22 . O 15	0.847 (9)	1.90 (1)	2.738 (2)	168 (2)
O13-H23 . O 8	0.848 (9)	1.95 (1)	2.745 (2)	156 (2)
O13-H23 \cdots O 9	0.848 (9)	2.42 (2)	3.047 (2)	132 (2)
$\mathrm{O} 13-\mathrm{H} 24 \cdots \mathrm{O} 7^{\text {vi }}$	0.846 (9)	1.919 (9)	2.751 (2)	167 (2)
$\mathrm{O} 14-\mathrm{H} 25 \cdots \mathrm{O} 10^{\text {vii }}$	0.849 (9)	2.53 (2)	3.138 (2)	129 (2)
$\mathrm{O} 14-\mathrm{H} 25 \cdots \mathrm{O} 12^{\text {vii }}$	0.849 (9)	2.02 (1)	2.837 (2)	162 (2)
O14-H26 . $\mathrm{O}^{\text {1 }} 1^{\text {iii }}$	0.845 (9)	2.59 (1)	3.381 (2)	156 (2)
$\mathrm{O} 15-\mathrm{H} 27 \cdots \mathrm{O} 10^{\text {viii }}$	0.846 (9)	2.65 (2)	3.242 (2)	128 (2)
$\mathrm{O} 15-\mathrm{H} 27 \cdots \mathrm{O} 12^{\text {viii }}$	0.846 (9)	1.955 (9)	2.779 (2)	165 (2)
$\mathrm{O} 15-\mathrm{H} 28 \cdots \mathrm{O} 8^{\text {i }}$	0.847 (9)	2.11 (1)	2.856 (2)	147 (2)
$\mathrm{O} 15-\mathrm{H} 28 \cdots \mathrm{O} 9^{\text {i }}$	0.847 (9)	2.44 (1)	3.174 (2)	145 (2)

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $x-1, y, z$; (iii) $x-2, y, z-1$; (iv) $-x,-y, 1-z ; \quad$ (v) $\quad-x,-y,-z ; \quad$ (vi) $\quad 1+x, y, z ; \quad$ (vii) $\quad x-1, y, z-1$; (viii) $2-x,-y, 1-z$.

Water H atoms were located in a difference map and refined as riding, with $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distance restraints of 0.85 (1) and 1.39 (1) Å, respectively, and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. All other H atoms were placed in calculated positions $[\mathrm{C}-\mathrm{H}=0.93$ (aromatic) or $0.97 \AA$ (aliphatic)] and refined using a riding model $\left[U_{\text {iso }}(H)=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

metal-organic papers

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant No. 20101003), Heilongjiang Province Natural Science Foundation (grant No. B0007), the Educational Committee Foundation of Heilongjiang Province and Heilongjiang University for supporting the study.

References

Gao, S., Li, J.-R, Liu, J.-W. \& Huo, L.-H. (2004). Acta Cryst. E60, m140-m141.

Gao, S., Liu, J.-W., Li, J.-R, Huo, L.-H. \& Zhao, H. (2004). Acta Cryst. E60, m94-m95.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kennard, C. H. L., Smith, G. \& O’Reilly, E. J. (1986). Inorg. Chim. Acta, 112, 47-51.
Liu, J.-W., Huo, L.-H., Gao, S. \& Ng, S. W. (2004). Acta Cryst. E60, m439m440.
McCann, M., Casey, M. T., Devereux, M., Curran, M., Cardin, C. \& Todd, A. (1996). Polyhedron, 15, 2117-2120.

McCann, M., Cronin, J. F., Devereux, M., McKee, V. \& Ferguson, G. (1995). Polyhedron, 14, 3617-3626.
Mirci, L. E. (1990). Rom. Patent No. 0743205.
Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

